If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2-9w+8=0
a = 2; b = -9; c = +8;
Δ = b2-4ac
Δ = -92-4·2·8
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{17}}{2*2}=\frac{9-\sqrt{17}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{17}}{2*2}=\frac{9+\sqrt{17}}{4} $
| 5-7x=9x+24 | | 10/25=x/2x | | x=1968-399 | | y=1968-399 | | 3.5c=350 | | H(x)=-1/2x-2 | | 2n+26=40 | | 10i+8=7i+35 | | 12(4+n)+5(-2n-9)=19 | | 7.75=1.25^x | | 2(0.2)(0.3)=x | | 1.1(1.082)(4.25x+2)=60 | | 180=8x-2 | | 3x+6=-7x+7 | | x(-4)(x-5)=0 | | 16=10x-x^2 | | 1200=2184-188x+4x^2 | | 0=m^2+5m+24 | | 0=m^2+5m*24 | | (x-7)^2-121=0 | | -2x^2=128 | | 3(x+2-11=5(x-4) | | 1(y)=-7/12 | | Y=190x+12 | | 9a+2=46 | | 100+y=110-y | | X+13=7x+13 | | 18^2+8.75^2=c^2 | | 4(1-3a)+2a=2(2+6a) | | 4(1-3a)+2a=2(4a-6) | | 11.5^2=2x^2 | | 5^x+2=4^4 |